This is the fourth and last episode of mini series “The dark side of AI”.
I am your host Francesco and I’m with Chiara Tonini from London. The title of today’s episode is Bias in the machine
C: Francesco, today we are starting with an infuriating discussion. Are you ready to be angry? F: yeah sure is this about brexit? No, I don’t talk about that. In 1986 the New York City’s Rockefeller University conducted a study on breast and uterine cancers and their link to obesity. Like in all clinical trials up to that point, the subjects of the study were all men. So Francesco, do you see a problem with this approach? F: No problem at all, as long as those men had a perfectly healthy uterus. In medicine, up to the end of the 20th century, medical studies and clinical trials were conducted on men, medicine dosage and therapy calculated on men (white men). The female body has historically been considered an exception, or variation, from a male body. F: Like Eve coming from Adam’s rib. I thought we were past that… When the female body has been under analysis, the focus was on the difference between it and the male body, the so-called “bikini approach”: the reproductive organs are different, therefore we study those, and those only. For a long time medicine assumed this was the only difference. Oh good ... This has led to a hugely harmful fallout across society. Because women had reproductive organs, they should reproduce, and all else about them was deemed uninteresting. Still today, they consider a woman without children somehow to have betrayed her biological destiny. This somehow does not apply to a man without children, who also has reproductive organs. F: so this is an example of a very specific type of bias in medicine, regarding clinical trials and medical studies, that is not only harmful for the purposes of these studies, but has ripple effects in all of society Only in the 2010 a serious conversation has started about the damage caused by not including women in clinical trials. There are many many examples (which we list in the references for this episode). Give me one Researchers consider cardiovascular disease a male disease – they even call it “the widower”. They conduct studies on male samples. But it turns out, the symptoms of a heart attack, especially the ones leading up to one, are different in women. This led to doctors not recognising or dismissing the early symptoms in women. F: I was reading that women are also subject to chronic pain much more than men: for example migraines, and pain related to endometriosis. But there is extensive evidence now of doctors dismissing women’s pain, as either imaginary, or “inevitable”, like it is a normal state of being and does not need a cure at all. The failure of the medical community as a whole to recognise this obvious bias up to the 21st century is an example of how insidious the problem of bias is. There are 3 fundamental types of bias:
C: Francesco, today we are starting with an infuriating discussion. Are you ready to be angry? F: yeah sure is this about brexit? No, I don’t talk about that. In 1986 the New York City’s Rockefeller University conducted a study on breast and uterine cancers and their link to obesity. Like in all clinical trials up to that point, the subjects of the study were all men. So Francesco, do you see a problem with this approach? F: No problem at all, as long as those men had a perfectly healthy uterus. In medicine, up to the end of the 20th century, medical studies and clinical trials were conducted on men, medicine dosage and therapy calculated on men (white men). The female body has historically been considered an exception, or variation, from a male body. F: Like Eve coming from Adam’s rib. I thought we were past that… When the female body has been under analysis, the focus was on the difference between it and the male body, the so-called “bikini approach”: the reproductive organs are different, therefore we study those, and those only. For a long time medicine assumed this was the only difference. Oh good ... This has led to a hugely harmful fallout across society. Because women had reproductive organs, they should reproduce, and all else about them was deemed uninteresting. Still today, they consider a woman without children somehow to have betrayed her biological destiny. This somehow does not apply to a man without children, who also has reproductive organs. F: so this is an example of a very specific type of bias in medicine, regarding clinical trials and medical studies, that is not only harmful for the purposes of these studies, but has ripple effects in all of society Only in the 2010 a serious conversation has started about the damage caused by not including women in clinical trials. There are many many examples (which we list in the references for this episode). Give me one Researchers consider cardiovascular disease a male disease – they even call it “the widower”. They conduct studies on male samples. But it turns out, the symptoms of a heart attack, especially the ones leading up to one, are different in women. This led to doctors not recognising or dismissing the early symptoms in women. F: I was reading that women are also subject to chronic pain much more than men: for example migraines, and pain related to endometriosis. But there is extensive evidence now of doctors dismissing women’s pain, as either imaginary, or “inevitable”, like it is a normal state of being and does not need a cure at all. The failure of the medical community as a whole to recognise this obvious bias up to the 21st century is an example of how insidious the problem of bias is. There are 3 fundamental types of bias:
- One: Stochastic drift: you train your model on a dataset, and you validate the model on a split of the training set. When you apply your model out in the world, you systematically add bias in the predictions due to the training data being too specific
- Two: The bias in the model, introduced by your choice of the parameters of your model.
- Three: The bias in your training sample: people put training samples together, and people have culture, experience, and prejudice. As we will see today, this is the most dangerous and subtle bias. Today we’ll talk about this bias.